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SUMMARY 

The steady Navier-Stokes equations in primitive variables are discretized in conservative form by a vertex- 
centred finite volume method. Flux difference splitting is applied to the convective part to obtain an upwind 
discretization. The diffusive part is discretized in the central way. 

In its first-order formulation, flux difference splitting leads to a discretization of so-called vector positive 
type. This allows the use of classical relaxation methods in collective form. An alternating line Gauss-Seidel 
relaxation method is chosen here. This relaxation method is used as a smoother in a multigrid method. The 
components of this multigrid method are: full approximation scheme with F-cycles, bilinear prolongation, 
full weighting for residual restriction and injection of grid functions. 

Higher-order accuracy is achieved by the flux extrapolation method. In this approach the first-order 
convective fluxes are modified by adding second-order corrections involving flux limiting. Here the simple 
MinMod limiter is chosen. In the multigrid formulation the second-order discrete system is solved by defect 
correction. 

Computational results are shown for the well known GAMM backward-facing step problem and for a 
channel with a half-circular obstruction. 
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INTRODUCTION 

Modern upwind discretization methods in compressible flow make use of flux-splitting concepts 
in flux matrix, flux vector or flux difference form. Currently very popular are the flux-vector- 
splitting method of Van Leer,' the flux-difference-splitting method of Roe2 and the flux- 
difference-splitting method of Osher and Chakra~arthy.~ It is not generally recognized that these 
concepts can also be applied to incompressible flow. Flux-difference-splitting methods for 
incompressible flow were developed by Hartwich and Hsu4 and Gorski.' These methods, 
however, use the concept of artificial compressibility in order to construct, through time 
integration, a solution of the steady incompressible Navier-Stokes equations. Artificial compress- 
ibility is, however, not necessary to apply flux-splitting concepts to incompressible flows. This was 
demonstrated by the first author6* ' using non-conservative flux matrix splitting. In this paper the 
flux-difference-splitting concept is used in a similar way in order to come to a conservative 
discretization. The flux difference splitting is of Roe type. 
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FLUX DIFFERENCE SPLITTING FOR INCOMPRESSIBLE FLOW 

The steady Navier-Stokes equations in conservative form for an incompressible fluid are 

where u and u are the Cartesian components of velocity, c is a constant reference velocity 
introduced to homogenize the eigenvalues of the system matrices, defined in the sequel, p is the 
kinematic pressure (pressure divided by density) and v is the kinematic viscosity coefficient. 

The set of equations (1H3) can be written in system form as 

where f and g are the convective fluxes and f, and g, are the viscous fluxes: 

(5 )  

Differences of the convective fluxes can be written in algebraically exact form as 

2u 0 1 
(6) 

where the overbar denotes the algebraic mean of the differenced variables. 

A, .  Any linear combination of these Jacobians has the form 
The matrices defined by (6) are discrete Jacobians. In the sequel these are denoted by A ,  and 

n,ti+G nyu 

n , )  c2nx c2ny 0 
A = n , A l + n y A z =  n , i  nyV+G ny , 

&, 3 = w * a, 

i 
where tl, = n,U+ nyV. For nz + n,” = 1 the eigenvalues of the Jacobian A are 

1, =w, 
with a = J(W’ + c’). The corresponding left and right eigenvector matrices are given by 

(ijw+nyc2)/a2 - ( i iw+n,c2)/a2 (n,ij-nyti)/a2 
(n, /2)  ( G / a  + 1) ( n y / 2 )  ( w / a  + 1) 
(nx/2)(W/a- 1) (ny/2)(G/-l) 1/2a 

( i i / a ) - n , ( G / a -  1) ( t i / a ) - n , ( G / a +  1) 

a-G U + G  i (6/a)-ny(G/a-1) (V/a)-n,(G/a+ 1) , 

where R = L - ’ .  

(7) 

(9) 
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The matrix A can be split into positive and negative parts by 

A +  = R  A+L, A-  = R A-L, A = A + + A - ,  

1313 

(10) 

where 

A'=diag(A:,A:,A;), A - = diag ( A ;, A; ,A; ), 
with 

I$+ =max(Ai, 0), A; =min(Ai, 0). 

By positive and negative matrices, matrices with non-negative and non-positive eigenvalues 
respectively are meant. This allows a splitting of any linear combination of flux differences by 

A#:= n, Af -k ny Ag = A+ A t  -k A-  A<, 

where < is the vector of dependent variables, 

t'={u,v,P}. 

VERTEX-CENTRED FINITE VOLUME FORMULATION 

Figure 1 shows the control volume centred around the node ( i , j ) .  
The inviscid part of (4) is 

af ag 
ax a y  
-+-=O. 

With piecewise constant interpolation of variables, the flux difference over the surface Si+ l j2  of 
the control volume can be written as 

AFi,i+ 1 :=Fi+ 1 -Fi=Asi + l /z(nxAfi , i  + 1 + n y  Agi, i +  I), (1 1) 

where Asi+ 
outward normal. 

denotes the length of the surface Si+ ljz and n, and n,, are the components of the unit 

Using the notation of the previous section, the flux difference is 

AFi,i+1=Asi+l/zAi,i+1A5i,i.,. (12) 

\ 

Figure 1. Interior control volume 
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Furthermore, the matrix Ai , i+ l  can be split into positive and negative parts. This allows the 
definition of the absolute value of the flux difference by 

IbFi, i + 1 I =Asi + 1/2(Ali + 1 --A,i + 1 )Mi, i + 1 * 

Fi+ 1/2 = + P i  + Fi + 1 - I AFi, i + 1 I)* 

(13) 

(14) 

Based on (13), an upwind definition of the flux is 

That this represents an upwind flux can be verified by writing (14) in either of the following two 
ways, which are completely equivalent: 

Indeed, when Ai , i+ l  has only positive eigenvalues, the flux Fi+ljz is taken to be Fi, and when 
Ai,i+l has only negative eigenvalues, the flux Fi+llz is taken to be F i + l .  

The fluxes on the other surfaces of the control volume are treated in a similar way. Using (15) 
and (16), the inviscid flux balance on the control volume of Figure 1 can be brought into the form 

Asi+ 1/2Ari+ 1 (ti+ 1 -ti) +Asi- 1/2Aiti- 1 (ti-ti- 1) +Asj+ 1/2Aj,j+ 1 (Ti+ 1 -Tj) 

+ASj-,, ,A,tj-1(Tj-5j-1)=0. (17) 

The set formed by equations (17) for all nodes is so-called positive. The positivity can be seen by 
writing (17) in the form 

G i ,  j =Asi - 1/2Azi- 1 ti - 1, j + Asi + 1/2 ( -Ali  + 1 )<i + 1, j + Asj- 112 Ajt j - 1 Ci, j -  1 

+ Asj + 1 /2 (- Aj, j + 1 )ti, j + 1 9 (18) 

where C is the sum of the matrices on the right-hand side, all of which have non-negative 
eigenvalues. 

As a consequence of the positivity, a solution can be obtained by a collective variant of any 
scalar relaxation method. By a collective variant, it is meant that at each node all components of 
the vector of dependent variables, t, are relaxed simultaneously. 

In practice, the inviscid flux balance (1 7) is formed by summing expressions of type (1 5)  over all 
surfaces using the appropriate components of the unit outward normal, n, and ny, in the 
definition of the Jacobian (7). 

In order to define the viscous fluxes f, and g, in a piecewise constant way on the surfaces of the 
control volume, approximations to derivatives of u and u are to be calculated at the midpoints of 
the surfaces. This is done here by the well known Peyret control volume technique. Figure 2 
shows the Peyret control volume around the point (i+$, j ) .  

Integration over the control volume gives 

where Ti + 1/2 denotes the surface of the control volume. On each side of Oi + midpoint rules are 
used to evaluate the surface integral. Vertex values (at grid points (i,j) and ( i+ 1,j)) or mean 
values over the four surrounding nodes are used. 
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Figure 2. Peyret control volume 

2 s ;  ,-I 

Figure 3. Control volume at a boundary 

With the derivatives obtained, the viscous fluxes are calculated at the midpoints of the surfaces 
of the control volumes around the vertices. The viscous flux balance is then obtained through 
piecewise constant integration. This results in a central discretization of the viscous flux balance. 
The structure of the discrete viscous flux balance, when transferred to the left-hand side in (4), is 
positive in the sense used above. Adding the viscous flux balance to the inviscid flux balance 
enforces the positivity. 

BOUNDARY CONDITIONS 

Figure 3 shows the half-volume centred around a node on a boundary. For convenience, the 
boundary is considered to be an Si-boundary. This half-volume can be seen as the limit of a 
complete volume in which one of the sides tends to the boundary. 

As a consequence, the convective flux on the side Si of the boundary control volume can be 
expressed according to (1 5) by 

Fi + AsiAlj(5i + 1 - 5ih (19) 
where the matrix is calculated at the node ( i , j ) .  With the definition (19) the inviscid flux 
balance on the control volume at the boundary takes the form (17), in which a node outside the 
domain comes in. This node, however, can be eliminated. 
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Using the left and right eigenvector matrices (8) and (9), the general expression for A-  is found 
to be 

nyw-j?+n,A2ti/2 - n y w - a +  nyA2G/2 (nyw - y  + Ati/2)/a 

-n,c21/2 -nyc2A/2 - c2/2a  
-n , t i -p+  n,iZzv*/2 n,W-cr + nyiZ2v*/2 (-n,G -y + iZv*/2)/a 1 , (20) 

fi = 6- n,,( W + a), li = U- n,(G + a), 

a=( i iw+n,cZ) /a2 ,  /?=(Dw+nyc2)/az,  y = (n,O- nyu)/a.  

A=(W-a)/a,  

where 

On a solid boundary, owing to the condition of tangentiality W= n,u+ny6=0, expression (20) 
implifies to (even more simplifications are possible) 

Because rank (A-) = 1 , two independent combinations of the discrete set of inviscid equations 
exist, eliminating the outside node. These correspond to the first two eigenvectors of L in (8). The 
viscous boundary conditions are 

u=o, u = o .  (22) 
As a consequence, we only need one boundary equation. The first eigenvector in (8) contains the 
tangential velocity. Existence of tangential velocity at a solid boundary is not consistent with the 
viscous equations. Therefore the second eigenvector is to be taken. This eigenvector is propor- 
tional to 

(n,c, nyc, 1) .  (23) 
This combination is used to determine the pressure at solid walls. The resulting equation is a mass 
equation corrected with contributions from the momentum equations. 

With (23) the viscous terms are combined on the solid boundary in a term proportional to 

nxVzu + n,V2v = V2w.  

Using the finite volume integration gives 

On the part of the surface coinciding with the boundary, w stands for the outward normal 
component of the velocity. Using the mass equation in a co-ordinate system aligned with the 
boundary gives 

aw at 
-+-=O, 
an 8 s  

where t is the tangential velocity component and s is the tangential direction. Since obviously 
a t / &  = 0, the result is 

aw 
7 = 0 .  an 
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This means that for the viscous terms there is no contribution from the boundary in the 
combination given by (23). 

A similar reasoning applies to the other boundaries. 
At outflow, W-=O.  This leads also to the simplification of A-  to the form (21). The 

combinations eliminating the outside node are again given by the first two eigenvectors of L in (8). 
It can immediately be verified in the expression of A-  given by (21) that these eigenvectors can be 
combined to give 

These determine the u- and o-equations. These equations are momentum equations corrected 
with a contribution from the mass equation. The boundary condition to be added can be the 
prescription of pressure (p = 0). For fully developed outflow, &/an = 0 and &/an = 0. Then again 
there is no contribution in the viscous terms at the boundary. 

At inflow, the expression for A-  given by (20) cannot be simplified. However, the combination 
(23) still holds. This gives the pressure. Further boundary conditions are prescription of u and u. 
For fully developed inflow, again there is no contribution in the viscous terms at the boundary. 

( 1 9 0 ,  W c ' ) ,  (0, 1,  At?/C2). 

SECOND-ORDER FORMULATION 

Owing to the use of the full upwind discretization for the convective fluxes, only first-order 
accuracy is obtained up to now. In order to obtain second-order accuracy, the definition of the 
flux (14) has to be modified. 

First we remark that, using (lo), the flux difference (12) can be written as 

n 

where the superscript n refers to the nth eigenvalue and r" and I" denote the nth right and left 
eigenvectors. 

By denoting the projection of &i, i+ l  on the rzth eigenvector by 

equation (24) can be written as 

AFi, i +  1 =I AF!.i+ 1 =Asi + 112 1 C+ 1/2AY+ 1/261+ I/? =Asi+ 112 I rY+ 1 / 2 C +  1 / 2 3  (25) 
n n n 

where AFY,i+l is the component of the flux-difference associated with the nth eigenvalue and 
zl+ l ,z is the projection of the flux-difference on the nth eigenvector 

Using (25), the first-order flux (14) can be written as 

Fi+ 112 =+(Fi + Fi+ 1 I-+ C AF;,:+ 1 ++C AF?,;+ 1 ,  (26) 

where the + and -superscripts denote the positive and negative parts of the components of the 
flux difference, i.e. the parts obtained by taking the positive and negative parts of the eigenvalues. 

According to Chakravarthy and Osher,* assuming a structured sufficiently smooth grid, a 
second-order flux corresponding to (26) can be defined by 

n n 

N d 

F ~ +  1/2 =+(F, + F ~ +  J -+ c AF;,:, ++C AF;;, ++ 2 AF;?,,~ -31 AF"- i + l , i + ~ ,  (27) 
n n n n 
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where 
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=Asi t  1/2G'+ 112 A;+ ljzgl- 1/27 (28) 
with a similar definition for L@'+,,~+,. 

Clearly, (28) is constructed by considering a flux difference over the surface Si+ 1/2, i.e. using the 
geometry of this surface, with data shifted in the negative i-direction. CY- 1,2 represents the 
projection of the shifted difference of the dependent variables on the nth eigenvector of the 
original flux difference. The second-order correction could also be defined using the r-variables, 
i.e. the projections of the flux difference. This would mean that the eigenvalue in (28) is also 
shifted. In practice, there is little difference between the results of the two formulations. In the 
sequel we only use (28). 

The definition (28) corresponds to a second-order upwind flux. This can be easily seen by 
considering the case where all eigenvalues have the same sign. Second-order accuracy also can be 
reached by taking a central definition of the flux vector 

pi + 1 /2 = 3 ( Fi + Fi + 1 ). (29) 
As is well known, using either (27) or (29) leads to a scheme which is not monotonicity-preserving 
so that wiggles in the solution become possible. Following the theory of flux  limiter^,^ a 
combination of (27) and (29) is to be taken. This has the form 

N N Tv N 

Fi + 112 + Fi + 1) -& 1 AFy,T+ 1 + $C AFr,y+ 1 + 3 1 AF;?, , i -3C AFlJ1,i + 2,  (30) 

AF;? = Lim (AF?? i, AF;,:+ ), (31) 

(32) 

n n n n 

=z5 N 
with 

75 d 

AF1;1, i t 2 = Lim(AFl;,, i + 2 9 AF,;+ 1 ), 

where Lim denotes some limited combination of both arguments. We choose here the simplest 
possible form of limiter, i.e. Lim = MinMod, where the function MinMod returns the .argument 
with minimum absolute value if both arguments have the same sign and returns zero otherwise. 
By the use of the limiter on the vectors (31) and (32) it is meant that the limiter is used per Q- 

component. 
In the vicinity of boundaries, some components of the flux differences in (31) or (32) do not 

exist. For these components the limiter then returns a zero. This does not degrade the second- 
order accuracy since, owing to the characteristic boundary treatment, these components do not 
enter the boundary equations. 

The foregoing second-order correction procedure is called the flux extrapolation technique. 

MULTIGRID DEFECT CORRECTION FORMULATION 

Since for the discretization obtained by the second-order formulation the positivity is not 
guaranteed, a relaxation solution is impossible. Therefore as solution procedure a defect correc- 
tion formulation is used. To explain the procedure, we denote symbolically the first and second- 
order formulations on a grid with mesh size h by 

where L and r indicate left- and right-hand sides respectively. 
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In a defect correction the following system is constructed: 

The term in square brackets is the defect correction. It is the difference between the defects of the 
first- and second-order discretizations. In our problem the defect is simply the defect of the flux 
balance. Thus the defect correction is explicitly given by the summation of the flux corrections 
generated by the flux extrapolation. 

In a defect correction procedure an outer iteration is set up in which, in each step, the first- 
order system is solved (approximately) followed by an update of the defect correction. The steps 
are repeated up to convergence. Here as solution method for the first-order system a multigrid 
procedure is used. The multigrid procedure in itself is iterative and serves as an inner iteration. In 
the examples discussed below, one multigrid cycle is used to obtain an approximate solution of 
the first-order system. After this cycle the defect correction is updated. Thus the inner and outer 
iterations are concurrent. After defect correction the inner iteration starts from the current 
approximation. The multigrid cycle used is the F-cycle and the non-linearity is treated implicitly 
by the full approximation scheme (FAS). The components of the multigrid cycle are more or less 
standard: alternating line Gauss-Seidel relaxations in lexicographic order are used for error 
smoothing where the coefficients of equations (17) are always formed with the latest available 
information. One alternating sweep is performed before and one after the coarse grid correction 
step. Within the flow field, restriction of residuals is done by full weighting, while injection is used 
at the boundaries. Coarse grid corrections are transferred back to finer grids by bilinear 
interpolation. The FAS restriction of function values is injection. 

COMPUTATIONAL EXAMPLES 

First, results are presented for the GAMM backward-facing step problem." The grid shown in 
Figure 4 is the second coarsest in a series of six. We denote this grid by grid 2. The grids are almost 
rectangular. A grid called grid 4 is twice more refined with respect to the grid shown and has 2834 
nodes. We present results on grid 4 and on more refined grids. At inflow, velocity is prescribed 
(parabolic profile). At outflow, pressure is given. The Reynolds number is 300 based on the 
maximum inlet velocity and inlet height. The relaxation is organized blockwise. A first block is 
formed by the nodes upstream of the step (25 x 17 nodes for grid 4). A second block is formed by 
the nodes at the step and downstream of the step (73 x 33 nodes for grid 4). The first block is 
relaxed first. The calculation starts from zero initial values for all the unknowns on the finest grid. 
To calculate the solution on grid 4, four grids are used in the multigrid formulation. 

Figure 5(a) shows the streamlines obtained on grid 4 after postprocessing for the first-order 
solution. The first-order solution is obtained by switching off the defect correction. The ratio of 
the reattachment length to the step height is about 4.6. In comparison with the reference results," 
this ratio is too short. This is due to the first-order accuracy. Figure 5(b) shows the result obtained 
on grid 4 with the second-order formulation. Here the reattachment length is 6.4 times the step 
height. This is about correct for this test case. Figure 5(c) shows the first-order result on a once 

Figure 4. Second coarsest grid for the backward-facing step problem 
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(4 ( 4  
Figure 5. Streamline results for the backward-facing step problem: (a) first-order on grid 4; (b) second-order on grid 4; 
(c) first-order on grid 5; (d) first-order on grid 6. The streamlines shown are -0.02, -0015, -0.01, 0, 0.1, 0.3, 0.5 

and 0 8  

Backward Facing Step 

b 
-10.0 I I I I I I 

10 20 30 40 50 60 

iterations 

Figure 6. Convergence histories of first-order (0, grid 4; 0, grid 5; *, grid 6) and second-order (0, grid 4) formulations 
for the backward-facing step problem 

Figure 7. Third coarsest grid for the half-circular obstruction problem 

more refined grid (grid 5: 49 x 33 nodes in the first block, 145 x 65 nodes in the second block). 
Figure 5(d) shows the first-order result on a twice more refined grid (grid 6 97 x 65 nodes in the 
first block, 289 x 129 nodes in the second block). The ratio of the reattachment length to the step 
height is about 5.3 and 5.8 respectively. In comparison with the reference results," this ratio is 
too short. This shows that the second-order result on the basic grid is of better quality than the 
first-order results on the refined grids. 
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Figure 6 shows the convergence behaviour of the solutions shown in Figure 5. The residual is 
the maximum residual over all equations. Residuals are calculated on the finest grid, based either 
on the first or second-order flux balance. For the first-order calculation the residuals are taken 
after the post-relaxation on the finest grid. For the second-order calculation the residuals are 
taken after the defect correction. By an iteration a basic multigrid cycle is meant. For grid 5 five 
levels are used in the multigrid cycle and for grid 6 six levels are used. The average convergence 

I 

(c) 
Figure 8. Streamline results for the half-circular obstruction problem: (a) first-order on grid 5; (b) second-order on grid 5; 
(c) first-order on grid 6; (d) first-order on grid 7. The streamlines shown are -0.007, -0.006, -0003,0,0~05,0~1,0~3,05 

and 0.8 
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- 

(4 
Figure 8. (Continued) 

-7.0 4 \ 
-9.0 

I I I I 
10 20 30 40 50 60 

iterations 

Figure 9. Convergence histories of first-order (0) and second-order (8) formulations on grid 5 for the half-circular 
obstruction problem 

factor per cycle for the first-order solution on grid 4 is about 0.22. The convergence on the other 
grids is almost identical. This is typical for a basic multigrid method. The average convergence 
factor per cycle for the second-order solution on grid 4 is about 0.81. The obtained convergence 
for the second-order solution is not really good. It is, however, comparable to the convergence of 
similar defect correction procedures for other flow problems, as for instance reported by Koren 
and Spekreijse" for the steady Euler equations. Also for the second-order solutions the 
convergence deteriorates with the grid refinement (not shown on the figure). 

Secondly, results are presented for a channel with a half-circular obstruction as shown in 
Figure 7. The grid shown has 49 x 9 nodes. It is the third in a series of seven grids. A twice more 
refined grid is called grid 5 and has 193 x 33 nodes. Further refined grids are grid 6 with 385 x 65 
nodes and grid 7 with 769 x 129 nodes. The flow is calculated for a parabolic inlet velocity profile 
and for a constant pressure at outlet. The Reynolds number is 100 based on the maximum inflow 
velocity and diameter of the half-circle. 
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Figure 8 shows the streamline results for first and second-order solutions on grid 5 and for first- 
order solutions on grids 6 and 7. The ratio of the reattachment length to the half-circle height is 
3.12 for the first-order solution on grid 5. The corresponding ratios for the first-order solutions on 
grids 6 and 7 are 3.39 and 3.53 respectively. The ratio for the second-order solution is 3.67. This 
ratio is the same on all grids (second-order solution on grids 6 and 7 not shown). This shows that 
the second-order solution on grid 5 is already a grid-independent solution. It also shows that the 
second-order solution is superior to the first-order solution on much finer grids. 

Figure 9 shows the convergence behaviour for the first- and second-order formulations for the 
results on grid 5. Five levels were used in the multigrid method. The average convergence factor 
per cycle is approximately 0.14 for the first-order solution and 0.79 for the second-order solution. 
The performance is comparable with the performance for the backward-facing step problem. 

CONCLUSIONS 

It has been shown that for the steady incompressible Navier-Stokes equations, flux difference 
splitting can be applied, leading to a set of discrete equations which can be solved by multigrid 
methods. 

The procedure is very similar to the procedure for a compressible fluid but no use of an 
artificial compressibility is made. The multigrid solution method can be organized in the same 
way as in compressible flow applications and a comparable multigrid performance is obtained. 
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